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a  b  s  t  r  a  c  t

The  mass  transport  properties  of  bulk  random  sphere  packings  depend  primarily  on  the bed  (external)
porosity  ε, but  also  on  the  packing  microstructure.  We  investigate  the influence  of the  packing  microstruc-
ture on  the diffusive  tortuosity  � =  Dm/Deff, which  relates  the  bulk  diffusion  coefficient  (Dm) to  the  effective
(asymptotic)  diffusion  coefficient  in a porous  medium  (Deff),  by  numerical  simulations  of  diffusion  in  a set
of computer-generated,  monodisperse,  hard-sphere  packings.  Variation  of  packing  generation  algorithm
and protocol  yielded  four  Jodrey–Tory  and  two Monte  Carlo  packing  types  with  systematically  varied
degrees  of  microstructural  heterogeneity  in the range  between  the  random-close  and  the  random-loose
packing  limit  (ε =  0.366–0.46).  The  distinctive  tortuosity–porosity  scaling  of  the  packing  types  is  influ-
enced  by  the  extent  to which  the  structural  environment  of  individual  pores  varies  in  a packing,  and  to
quantify  this  influence  we propose  a measure  based  on  Delaunay  tessellation.  We  demonstrate  that  the
oronoi volume distribution
elaunay tessellation

ratio of  the  minimum  to the maximum  void  face  area  of  a Delaunay  tetrahedron  around  a  pore  between
four  adjacent  spheres,  (Amin/Amax)D, is  a measure  for the  structural  heterogeneity  in the  direct  environ-
ment  of  this  pore,  and  that  the  standard  deviation  �  of  the (Amin/Amax)D-distribution  considering  all  pores
in  a packing  mimics  the  tortuosity–porosity  scaling  of the  generated  packing  types.  Thus,  �(Amin/Amax)D

provides  a  structure–transport  correlation  for diffusion  in  bulk,  monodisperse,  random  sphere  packings.
. Introduction

The transport properties of porous media are a central theme
f research in physics, chemistry, geology, and engineering, affect-
ng such diverse fields as, e.g., molecular diffusion in supercooled
iquids and glasses, chemical separations by chromatography,

igration of soil pollutants, and dam building. The ability to
elate the transport properties of a porous medium to its pore
pace architecture is of fundamental interest [1,2]. Traditionally,
tructure–transport correlations for porous media were estab-
ished from fitting experimental data or by using specific, simplified
often 2D) models to solve the fundamental transport equations.
tructural properties of the porous medium were described by
acroscopic, experimentally accessible parameters, such as den-
ity or porosity of the porous medium. In chromatography, we have
ome to rely on the bed or external porosity ε (interparticle void
olume fraction) of particle-packed columns as one of the most
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important parameters to estimate column quality, because two
important mass transport properties, hydraulic permeability and
hydrodynamic dispersion, depend first and foremost on the bed
porosity [3].  However, the common wisdom of chromatographers
that dense, well-packed beds make good columns, also includes
the homogeneity of the packing microstructure as a significant fac-
tor for the column performance. Between two columns of equal
bed porosity, the column with the more homogeneous packing has
a lower hydrodynamic dispersion coefficient and will thus yield
better separation efficiency. The impact of microstructural hetero-
geneity may  even overpower the influence of the bed porosity.
This effect has been observed in recent chromatographic practice
for columns packed with core–shell particles [4].  These columns
pair exceptionally low plate heights with rather high bed porosities
(typically ε = 0.40–0.43), a combination not observed for the tradi-
tional, fully porous particles. The low plate heights are mainly due
to a low eddy dispersion contribution to band broadening, which
is attributed to a homogeneous packing microstructure [5–7].
Systematic knowledge about structure–transport correlations
for particulate packings has been derived from numerical sim-
ulations of flow and transport in computer-generated random
sphere packings [8–10] as well as the just recently demonstrated
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hysical reconstruction of the morphology of modern chromato-
raphic supports [11,12].  From numerical simulation studies of
ulk, monodisperse, random sphere packings [10] we know that (i)
he hydrodynamic axial dispersion coefficient Dax increases with
he bed porosity and with the degree of heterogeneity (DOH) of
he packing microstructure; (ii) the larger the DOH of a packing

icrostructure, the steeper the increase of Dax with increasing bed
orosity; (iii) the DOH of a packing microstructure may  be captured
y Voronoi tessellation and is related to the second and third sta-
istical moments (standard deviation and skewness) of the Voronoi
olume distribution; and (iv) the hydrodynamic dispersion coeffi-
ient depends mainly on the short-range interchannel contribution
o eddy dispersion originating in the packing’s short-range disor-
er on the length scale of 1–2 particle diameters, specifically the
arameters �2 and ω2 as defined by Giddings [9,10,13], which
cale with the standard deviation and skewness of the Voronoi
olume distributions. Another possibility to describe the DOH of a
acking microstructure is the determination and analysis of chord

ength distributions of the packing void space [12]. The chord length
istribution of experimental, physically reconstructed packings fol-

ows a two-parameter distribution function (a simplified k-gamma
unction): the parameter of location (arithmetic mean) provides
n alternative measure for pore size, which is crucial to column
fficiency; the average pore size of a column correlates with tran-
channel dispersion. The k-value obtained from the chord length
istributions is a second-moment parameter that defines the (sta-
istical) dispersion of the distribution function, and therefore is a
escriptor of packing-scale disorder. It provides a scalar measure
or pore heterogeneity on the length scale of short-range inter-
hannel (hydrodynamic) dispersion. Thus, we have two different
ethods to describe the microstructural DOH of a packing, one

ased on Voronoi tessellation, the other based on chord length
istributions [10,12].

Because eddy dispersion and ultimately band-broadening are
f central importance in chromatography, much less thought is
sually given to other transport properties such as hydraulic
ermeability and effective diffusion in a packing. The diffusion
oefficient appears in the plate height equation in form of the
bstruction factor � , defined as [13]

 = Deff

Dm
= limt→∞

D(t)
Dm

= 1
�

, (1)

here Dm is the molecular diffusion coefficient in bulk solution, D(t)
s the pre-asymptotic molecular diffusion coefficient in the porous

edium, and Deff is its effective, i.e.,  asymptotic (long-time) value;
he inverse of the obstruction factor is the diffusive tortuosity �.
he obstruction factor � , which directly states the extent to which
ree diffusion of a molecule in solution is hindered (obstructed) by
he presence of the solid obstacles in a porous medium, has the

erit of being an illustrative descriptor, but its use is mainly con-
ned to chromatography. The wider scientific community prefers
he term tortuosity, which recalls the winding of the fluid path-
ays through a porous medium. Unfortunately, several conflicting
efinitions of tortuosity are in use, as pointed out in [14,15].  For
xample, the often used definition of tortuosity as the ratio between
he average length of a crooked path between two points to the
traight distance, is a purely geometric parameter whose value is
asily determined for a model of unconnected, twisted tubes of
onstant cross-section, but not for a real, complex porous medium.
n contrast, definitions of tortuosity that are based on experimen-
ally accessible quantities, such as electric and diffusive tortuosity,
re physically meaningful as well as unequivocal, as they do not

epend on a specific structural model of the porous medium.

Tortuosity is a very important topic in the general research on
orous media, and the idea to predict the tortuosity of a porous
edium from its porosity – beginning with Maxwell’s equation
. A 1218 (2011) 6489– 6497

dating back to the last quarter of the 19th century [16] – has
produced a steady stream of propositions for tortuosity–porosity
correlations, based on empirical data or theoretical models [17,18].
The existing correlations differ in their definition of tortuosity, but
generally describe it as a decreasing function of porosity. Although
the diversity of porous media precludes the existence of a univer-
sal tortuosity–porosity correlation, the notion exists that such an
equation could be found for a well-defined porous medium such
as a random packing of hard objects of equal shape [19]. Several
correlations for such packings have been proposed [16,19–28],  all
of them basically more or less elaborate functions of the bed poros-
ity. Although these correlations implicitly account for the packing
microstructure through the underlying model used for the porous
medium, they nonetheless convey the message that the tortuosity
of a random packing of uniform, hard spheres is fully determined by
the bed porosity. In fact, the question if random sphere packings of
equal bed porosity, but different packing microstructure, could dif-
fer in their tortuosities and moreover, in their tortuosity–porosity
scaling, as known for crystal packings [29,30],  has to our knowl-
edge never been posed nor investigated. Thus, the published
literature on porous media gives the impression that as far as
tortuosity is concerned there are different types of crystal (i.e.,
ordered) sphere packings, but only one type of random sphere
packing.

In this work, we  investigate the tortuosity–porosity scaling
of bulk, monodisperse, random hard-sphere packings that dif-
fer only in the individual arrangement of the obstacles to find
a structure–transport correlation for diffusion. By variation of
packing generation algorithm and parameters, we  computer-
generated six distinct packing types over a bed porosity range
of ε = 0.366–0.46, i.e.,  from random-close to random-loose pack-
ing. We  simulate diffusion in the void space of the packings by a
random-walk particle-tracking technique, and then compute the
diffusive tortuosity values for each packing type and porosity to
evaluate how the resulting tortuosity–porosity curves reflect the
different packing types.

2. Numerical simulations

2.1. Packing generation

Isotropic, random, unconfined packings of monosized, uni-
form, hard, impermeable spheres were computer-generated with
dimensions of approximately 10 × 10 × 70 sphere diameters (dp),
applying periodic boundary conditions in all directions. The
packing dimensions were chosen originally for the analysis of
hydrodynamic dispersion [10], where long packings are required
to observe asymptotic behavior. Although shorter packings would
suffice to observe asymptotic diffusion behavior, we used the long
packings to extend the sample size, i.e.,  the long packings count as
several realizations of shorter packings.

Four packing types were generated using a modified
Jodrey–Tory (JT) algorithm [31], a collective-rearrangement
method [32], which yields geometrically jammed, but mechani-
cally unstable packings. The relevant properties of the JT-algorithm
for this study are: (i) it yields isotropic packings, (ii) partial crys-
tallization is avoided [33], (iii) bed porosity and DOH can be
systematically varied through the generation parameters [10].
Please note that isotropy at the packing scale does not exclude
the presence of local anisotropy [34]. Packing generation with the
JT-algorithm starts from a random distribution of sphere centers
in a simulation box, where sphere overlap is typical. Each iteration

includes the search for two  sphere centers with a minimum
pair-wise distance that defines the maximal sphere diameter
at which no sphere-overlap occurs in the current configuration,
followed by symmetrical displacement of the two  sphere cen-
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Fig. 1. Bulk (unconfined) random packings of monosized hard disks at ε ≈ 0.46 generated with the Jodrey–Tory algorithm following different packing protocols. Shown
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re  the initial distributions of the disks for S- and R-configurations (top) and the g
omparison between initial and final packing microstructure. (For interpretation of
he  article.) The figure is reproduced from [10].

ers up to a new distance. The displacement length used in the
econd step is scaled by a constant ˛. Different JT-packing types
ere generated by (i) varying the initial distribution scheme of

he sphere centers and (ii) the value of the constant  ̨ scaling
he displacement length [10]. Generation of R-packings started
rom a random and uniform distribution of sphere centers in the
imulation box, whereas for S-packings the simulation box was
rst divided into equal cubes and then each sphere center placed

n a random position into a cube. The scaling constant was  set to
 = 0.001 (Rx0.001),  ̨ = 1 (R and S), or  ̨ = 2 (Sx2). With a small
isplacement length sphere centers remain close to their initial
ositions during packing generation, preserving the randomness
f the initial distribution. A larger displacement length yields a
ore homogeneous distribution of sphere centers in the final

onfiguration (Fig. 1).
The Monte Carlo (MC) algorithm provides a complementary

pproach to the JT algorithm for generating dense, random sphere
ackings [35]. MC-packing generation starts from a uniform dis-
ribution of spheres in a dilute cubic array constructed from
xpanding a simple cubic lattice. We  used an expansion factor of
, resulting in an eight times larger volume of the initial pack-

ng compared with a simple cubic packing. The packing spheres
re moved in random directions, and each move that does not
esult in a collision with another sphere is accepted. The desired
ed porosity ε is reached by compression of the coordinate sys-
em, executed every 5000 movement attempts and scaled by a
ompression rate  ̋ [36]. By using  ̋ = 0.95 (fast compression)
r  ̋ = 0.05 (slow compression), we generated two different MC-
acking types, �x0.95 and �x0.05, respectively. The values were
hosen from the ends of the possible range (0 <  ̋ ≤ 1) to create

 maximum of microstructural variety with the two  MC-packing
ypes.

Each packing type was generated at six porosities (ε = 0.366,
.38, 0.40, 0.42, 0.44, 0.46) with one exception: we were not
ble to generate Sx2-packings at ε = 0.366. To account for statis-
ical variations, ten realizations (in consideration of the available
omputational resources) of each packing type and porosity were
enerated, 350 packings in total. Results reported for a packing of a
iven type and porosity refer to the mean value from the ten indi-

idual realizations. The number of realizations together with the
xtended packing dimensions ensured a thorough sampling of the
tructural variations among individual packings of the same type
nd porosity.
ed two-dimensional packings (Sx6, S, R, Rx0.001; bottom). Colored circles aid the
eferences to color in this figure legend, the reader is referred to the web version of

2.2. Simulation of diffusion

Diffusion in the generated packings was simulated by a
random-walk particle-tracking technique [37], employing a multi-
ple rejection boundary condition at the solid–liquid interface [38].
An ensemble of 5 × 106 inert, point-like tracer particles was  ran-
domly distributed within the void space of a packing, and then
displaced due to random motion calculated from a Gaussian distri-
bution with a mean of zero and a variance of (2Dmıt)1/2 (where Dm

is the diffusion coefficient of the tracer particles in bulk solution)
around each spatial coordinate. The position of all tracers was mon-
itored at each time step ıt, defined such that the maximum tracer
displacement at each iteration did not exceed a distance of dp/60.
Diffusion coefficients D(t) in a given direction were calculated from
the tracer displacements [39] as

Dx(t) = 1
2N

d

dt

N∑

i=1

(	rxi − 〈	rx〉)2, (2)

where 	rxi and 〈	rx〉 denote the corresponding Cartesian com-
ponents of the displacement of the ith tracer and the average
displacement of the tracer ensemble after time t, respectively, in
x-direction. Isotropic diffusion behavior was observed for all pack-
ing types. The effective diffusion coefficients Deff were determined
from the asymptotes of the D(t)/Dm-curves (shown for selected
packings in Fig. 2), and tortuosity values � calculated from Eq. (1).

To represent the boundaries of the packings’ spheres, we used
a smoothed spheres approach [40], where discretization is omit-
ted and random walk takes place between spheres with smooth as
opposed to stair-step contours. The adequate geometrical repre-
sentation of the spherical obstacles in the packing is important for
modeling diffusion, because the path of a tracer around a ragged
surface is longer than around a smooth one, which results in exag-
gerated tortuosity values.

For comparison, effective diffusion was also simulated in three
crystal packing types, the face-centered cubic (FCC), the body-
centered cubic (BCC), and the hexagonal close-packed (HCP)
structure. To obtain crystal packings with bed porosities within
the investigated range of ε = 0.366–0.46, the crystal structures were

uniformly diluted.

The program realization of all algorithms was implemented as
parallel codes in C language using the Message Passing Interface
(MPI) library [41]. Total simulation time for all packings was ∼110 h
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Fig. 2. Time-evolution of the normalized diffusion coefficient D(t)/Dm for selected
packings at ε = 0.46 for simulations of diffusion with the smoothed spheres approach.
Elapsed time is given in units of the diffusive time, defined as tdiff = t2Deff/d2
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eff is the long-time (asymptotic) value of the diffusion coefficient in a sphere pack-
ng and dp is the sphere diameter. One diffusive time unit is the time it takes for a
racer to travel a distance equal to one sphere diameter by diffusion.

n 2048 BlueGene/P processor cores. For Voronoi and Delaunay
essellations [42] of the generated packings we used MATLAB7.0
uilt-in routines, which are based on the Quickhull algorithm intro-
uced by Barber et al. [43].

. Results and discussion

.1. Packing generation and microstructure

By variation of the packing generation algorithm and param-
ters, we generated a set of six distinct types of monodisperse,
ulk, random sphere packings at bed (external or interparticle)
orosities of ε = 0.366–0.46. These packings mimic  infinitely wide,
andomly packed beds of hard, impermeable, uniform spheres
ithout confining walls. To illustrate the effect of the varied packing

eneration parameters on the final packing microstructure, we use
 two-dimensional representation, i.e.,  random packings of uniform
isks instead of spheres. Fig. 1 visualizes the two-step parameter
ariation used for packing generation with the Jodrey–Tory (JT)-
lgorithm to yield the four JT-packing types Rx0.001, R, S, and Sx2.
The Sx2-packing is replaced by a Sx6-packing in Fig. 1 to achieve

 stronger visual effect.) S-packing generation starts from a more
rdered (lattice-based) initial distribution of sphere centers than
-packing generation, and the value of the constant for scaling

he displacement length  ̨ = 6 (2 for sphere packings), 1, or 0.001
etermines how well inhomogeneities in the initial distribution of
phere centers are balanced out in the final packing microstructure.
t is important to recognize from Fig. 1 that the parameter varia-

ig. 3. Effect of the compression rate value  ̋ on the microstructure of bulk random pack
acked  regions are colored red. Closely packed disks form close-to-regular triangles on a 

dentified by the value of the maximum edge length 
max of the triangles, with 
max < 1.0
f  the references to color in this figure legend, the reader is referred to the web version o
Fig. 4. Spatial tessellation of a two-dimensional packing of uniform disks. (A) Delau-
nay tessellation. (B) Voronoi tessellation.

tion used with the JT-algorithm operates on two  different length
scales: the initial ordered or random distribution of the sphere cen-
ters concerns the whole packing, whereas the value of the scaling
constant  ̨ affects the local environment of the individual spheres
in the packing.

The varied parameter in packing generation with the Monte
Carlo (MC)-scheme was  the value of the compression rate ˝;  using
a high (  ̋ = 0.95) and a low (  ̋ = 0.05) value for the compression
rate yielded the two MC-packing types �x0.95 and �x0.05, respec-
tively. The MC-algorithm is known to incorporate highly ordered,
densely packed regions into a packing, if low compression rates and
low bed porosities are combined [8,33].  Fig. 3 illustrates the effect of
the compression rate value on the final packing microstructure for
disk packings generated with high (  ̋ = 0.99) and low (  ̋ = 0.025)
compression rates. The amount of densely packed regions in a
packing can be estimated by Delaunay tessellation. Delaunay tes-
sellation divides the three-dimensional packing space into a mesh
by taking the centers of four next-neighbor spheres as the vertices
of a tetrahedron [42]. In the two-dimensional case, connecting the
centers of next-neighbored disks yields a Delaunay mesh of trian-
gles (Fig. 4A). In highly ordered regions, disks form close-to-regular
triangles on the Delaunay mesh. A suitable estimate for the devi-
ation from regularity of a Delaunay triangle is its maximum edge
length 
max [44]. Delaunay triangles with maximum edge length
smaller than a certain critical value of 
max are considered to indi-
cate a highly ordered, densely packed region. In Fig. 3 we  show
the results for applying a stricter (
max < 1.06dd, where dd is the
disk diameter) as well as a looser (
max < 1.09dd) criterion. While a

looser criterion naturally increases the amount of densely packed
regions in both packings, the MC-packing generated with a low
compression rate (˝ = 0.025) contains a higher fraction of such

ings of monosized disks at ε ≈ 0.34 generated with a Monte Carlo-scheme. Closely
Delaunay mesh (resulting from connecting the centers of adjacent disks), and were
6dd (where dd is the disk diameter; left) or 
max < 1.09dd (right). (For interpretation
f the article.)
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ig. 5. Voronoi volume distributions of the generated Monte Carlo (A) and Jodrey–
he  Voronoi volume distributions of the generated packings as a function of bed po

egions than the MC-packing generated with the high compression
ate (  ̋ = 0.99) for both values of 
max.

Each of the generated packings has a microstructure that
epends on packing type and bed porosity and whose degree of
eterogeneity (DOH) can be determined by Voronoi tessellation
10]. Voronoi tessellation surrounds each sphere in a monodis-
erse packing by a polyhedron that contains all points closer to this
phere center than to any other (Fig. 4B). The packing space is thus
ivided into a set of non-overlapping polyhedra with associated
oronoi volumes VV [42]. The VV-distributions for the generated
acking types at selected porosities are shown in Fig. 5A and B. For

T-packings, the VV-distributions are generally unimodal (Fig. 5B).
he identical VV-distributions of the JT-packing types at ε = 0.366
eflect the severely restricted possibilities for the placement of indi-
idual spheres at the random-close packing limit: at this limiting
ensity, Rx0.001-, R-, and S-packings have identical microstruc-
ures (within the limits of statistical variation). With increasing
ed porosity the VV-distributions widen and shift to larger val-
es, and differences between the packing types emerge, until at the
andom-loose packing limit (ε = 0.46), the VV-distributions reflect
ost clearly the respective JT-packing types (Fig. 1): the most

omogeneous packing type has the narrowest and most symmet-
ical distribution (Sx2), and the most heterogeneous packing type
he widest and most skewed distribution (Rx0.001).

MC-packings show the opposite trend to the JT-packings in
he porosity-scaling of their VV-distributions (Fig. 5A): both MC-

acking types have identical, unimodal, symmetrical distributions
t ε = 0.46, and differ most from each other at ε = 0.366, where
he �x0.95-packing has a narrow, symmetrical VV-distribution,
hereas that of the �x0.05-packing is widened and skewed due
B) packings at selected bed porosities. Standard deviation (C) and skewness (D) of
. Panel (B) is reproduced from [10].

to a developing second mode at smaller volumes. The latter VV-
distribution reflects a microstructure composed of dense, highly
ordered regions (associated with smaller Voronoi volumes) inter-
spersed between more loosely packed regions (associated with
larger Voronoi volumes), the result of combining low bed poros-
ity and low compression rate during packing generation with the
Monte Carlo-scheme (cf. Fig. 3).

Fig. 5C and D, which shows standard deviation and skewness,
respectively, of the VV-distributions for the generated packings,
quantify and summarize the information gained from Fig. 5A and B.
The two parameters �(VV) and �(VV) are a quantitative measure for
the microstructural DOH of a packing and follow the same porosity-
scaling as the hydrodynamic dispersion coefficient [10]. Each of
the six packing types has a unique porosity-scaling of the DOH.
For the four JT-packing types it reflects their relative packing-scale
disorder: Rx0.001 > R > S > Sx2, i.e.,  the higher the packing-scale dis-
order, the higher the value of �(VV) and �(VV) at a given porosity
and the steeper the rise of these two  parameters at increas-
ing porosity. MC-packings are more homogeneous than the most
homogeneous JT-packing type (Sx2) at high to intermediate porosi-
ties (ε = 0.46–0.40), and for the �x0.95-packing type this remains
the case also at low bed porosities (ε = 0.38–0.366). Considering that
MC-packing generation starts from a lattice-based distribution of
sphere centers, this result is not unexpected. Whereas the �x0.95-
packing type follows essentially the same trend upon densification
as the JT-packing types, i.e.,  the DOH decreases, only with a smaller

slope, the �x0.05-packing type behaves quite differently: its DOH
goes through a minimum at ε = 0.40 and then increases again, so
that at ε = 0.366 the �x0.05-packing has the highest DOH  among
all packing types. This high DOH is explained by the irregular distri-
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Fig. 6. Tortuosity–porosity scaling of the generated packing types. Statistical vari-
ations among ten individual random sphere packings of a given type and porosity
are  expressed by 95% confidence intervals calculated using the standard error of the
mean. Also shown are tortuosity values simulated for three crystal packing types: the
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Table 1
Values received for p and correlation coefficients R2 from fitting the
tortuosity–porosity data simulated for the generated packing types to the
modified Weissberg equation (Eq. (4)).

Packing type p R2

Rx0.001 0.499 0.876
R 0.496 0.943
S  0.496 0.938

Delaunay tessellation
ody-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed
HCP) structure.

ution of dense and more loosely packed regions, which translates
o increased disorder on the packing scale.

.2. Tortuosity–porosity scaling of the generated packing types

The tortuosity–porosity data in Fig. 6 present the results of
imulating effective diffusion in the void space of the gener-
ted packings. At first glance, the tortuosity–porosity data of
he JT-packing types reflect their relative packing-scale disor-
er (Fig. 5C and D), with identical tortuosity values (� = 1.486)
t ε = 0.366 and maximum difference at ε = 0.46, where the most
omogeneous JT-packing type (Sx2) has the lowest tortuosity
� = 1.373) and the most heterogeneous JT-packing type (Rx0.001)
he highest tortuosity (� = 1.403). R- and S-packings, however, have
dentical tortuosities (within statistical variation) throughout the
nvestigated porosity range. Because the common parameter in
heir generation is the value for the displacement length scaling-
onstant (  ̨ = 1), the identical tortuosity–porosity curves of R- and
-packings suggest that the influence of the packing microstruc-
ure on diffusion is restricted to the operative length scale of ˛, i.e.,
o the local environment of individual spheres. Expressed in terms
f the packing void space, the value of  ̨ affects the pores and the
athways to adjacent pores, the pore throats.

MC-packings are generally less tortuous than JT-packings,
ith tortuosity values between � = 1.335 at ε = 0.46 and � = 1.430

�x0.05) or � = 1.454 (�x0.95) at ε = 0.366. Differences between the
wo MC-packing types emerge and increase upon densification as
as observed for the DOH (Fig. 5C and D), but the �x0.05-packing

ype maintains the lowest tortuosity among all generated packing
ypes throughout the whole porosity range. This contrasts with the
bservation that at low porosities (ε = 0.38 and 0.366) the �x0.05-
acking type has the largest DOH of all generated packing types
Fig. 5C and D), and is thus another indicator that the packing-scale
isorder is not the determining factor for tortuosity.

Fig. 6 demonstrates that the microstructure of bulk, monodis-
erse, random sphere packings influences the diffusive tortuosity.
lthough the effect is small – 2% difference between the extreme
T-packing types Sx2 and Rx0.001 at ε = 0.46, and similarly ca. 2%
ifference between the two MC-packing types at ε = 0.366 – it is
enuine and not due to statistical variations among individual pack-
Sx2  0.486 0.989
�x0.95  0.436 0.966
�x0.05 0.425 0.990

ings of a given type and porosity, as the small confidence intervals
in Fig. 6 prove.

Also interesting is the contrast to the crystal packings, whose
simulated tortuosities already approach the analytical solutions
[29]. The tortuosity values of MC-packings lie between those of JT-
and the crystal packing types, which again reflects the lattice-based
distribution of sphere centers from which MC-packing generation
starts. Fig. 6 graphically depicts that in the investigated porosity
range there may  be more variety in tortuosity values between dif-
ferent types of random sphere packings than between different
types of crystal packings!

According to Fig. 6 a tortuosity–porosity relation for random
sphere packings needs to consider the influence of the packing
microstructure. One of the earliest correlations was proposed on
a theoretical basis by Weissberg [20] as a lower bound for the
tortuosity in random arrangements of freely overlapping spheres:

� = 1 − 0.5 · ln ε. (3)

In its modified form,

� = 1 − p · ln ε, (4)

Weissberg’s correlation has found corroboration from experi-
ments [14,17,21] as well as simulations [19], with values of p = 0.49
[14,21], p = 0.77 [19], and p = 2 [17]. Theoretical correlations are
derived for a specific model structure and are thus in principle
restricted in their applicability. The reason for the popularity of the
modified Weissberg correlation lies probably in its elegant sim-
plicity and easy adaptability through a variable coefficient, which
allows to fit a wider range of packing types than more elaborate
equations.

We fitted our simulated tortuosity–porosity data of Fig. 6 to
Eq. (4), using p as an adjustable parameter. The results for p along
with the correlation coefficients R2 for the fits are listed in Table 1.
For the Rx0.001, R-, and S-packing types we received p ≈ 0.5, the
value predicted by Weissberg [20], whereas the result for the
Sx2-packing type is closer to p = 0.49, the value introduced by
Mauret and Renaud [21]. MC-packings are set apart by smaller
p-values (p = 0.43–0.44). If we  rank the six packing types accord-
ing to the relative position of their tortuosity curves in Fig. 6 as
�x0.05 < �x0.95 < Sx2 < S,R < Rx0.001, the calculated p-values also
increase in this sequence. Interestingly, the correlation coefficients
show the opposite trend, i.e.,  those packing types (�x0.05 and Sx2)
whose generation parameters were intended to create homoge-
neous packing microstructures demonstrate the best adherence to
the modified Weissberg equation. In summary, however, the cor-
relation coefficients are unconvincing and lead to the conclusion
that the tortuosity–porosity scaling of the generated packing types
is not adequately represented by the modified Weissberg equation.

3.3. Geometrical representation of the packing pore space by
The analysis of the tortuosity–porosity data for the different
packing types in the previous section suggests that diffusion is
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Fig. 7. Delaunay tessellation surrounds each pore in a packing with an irregular tetrahedron, whose faces have solid and void areas. (A) Porosity-scaling of �(Amin/Amax)D,
the  standard deviation of the distribution that describes the ratio between the minimum and the maximum void face area of each Delaunay tetrahedron in the tessellated
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acking. (B) Porosity-scaling of �(Amin)D/�(Amax)D, the ratio of the standard deviatio

nfluenced on a length scale approximately equal to the direct envi-
onment of individual pores in a packing. To find a suitable measure
or the structural heterogeneity at this length scale, we employed
elaunay tessellation, because this method has been shown to be
specially valuable for characterization of the packing void space
44–51]. Delaunay tessellation divides monodisperse sphere pack-
ngs into irregular tetrahedra, whose vertices are the centers of
our closest (but not necessarily touching) spheres that enclose

 pore (cf. Fig. 4A). The packing space is completely filled with
on-overlapping tetrahedra, each comprised of solid and void com-
onents: the void volume of a Delaunay tetrahedron represents
he pore volume, and the void areas of the tetrahedron’s four faces
orrespond to the cross-sections of the pore throats that form the
onnections to the four neighboring pores, i.e.,  the entrance and exit
ays for a tracer particle into or out of a given pore. We  evaluated

everal metric properties of the Delaunay tetrahedra for their abil-
ty to represent the influence of the packing microstructure on the
ackings’ tortuosity: volume; maximum, minimum, and average
oid face areas; maximum, minimum, and average edge length; and
he T-measure [44], which quantifies the deviation of the Delau-
ay tetrahedra from regularity (Delaunay simplices of the densest
rystal packings, FCC and HCP, are perfect tetrahedra and quartoc-
ahedra); also the distances of the center of mass to the center of
he faces, as well as various combinations of the said metric prop-
rties. The mean, standard variation, and skewness of each metric
roperty was calculated and its porosity-scaling compared to those
f the simulated diffusive tortuosities. The mean of the maximum
nd the mean of the minimum void face area – but not that of the
verage void face area – gave close results, pointing to the limiting
ather than the average properties of a pore as a possible measure.

e  found a good representation for the tortuosity–porosity scal-
ng of all packing types by considering two limiting properties for
ach pore, namely the ratio of the minimum and maximum void
ace areas of each Delaunay tetrahedron (Amin/Amax)D. The diffu-
ive probability for a tracer particle to move into or out of a given
ore is determined by the size of the pathways to the pore, i.e.,
y the pore throats, whose cross-sections are represented by the
oid areas of the Delaunay tetrahedron’s four faces. We  interpret
he value of (Amin/Amax)D as a measure for the heterogeneity in the
irect environment of a single pore. In the limit of (Amin/Amax)D = 1,
he pore environment is fully homogeneous, because all void face
reas are equal, which means that the four pore throats through

hich a tracer could leave the pore have equal cross-sectional

reas. The lower the value of (Amin/Amax)D, the more heteroge-
eous is the pore environment. If (Amin/Amax)D is calculated for each
elaunay tetrahedron in a tessellated packing, the resulting dis-
 the distributions for Amin and Amax.

tribution describes the different kinds of pore environments that
exist in this packing. The standard deviation of this distribution,
�(Amin/Amax)D, has a porosity-scaling (Fig. 7A) that closely mimics
that of the tortuosity values for each packing type (Fig. 6); thus,
we propose �(Amin/Amax)D as a suitable descriptor for the influ-
ence of the packing microstructure on the diffusive tortuosity of
monodisperse, bulk, random sphere packings.

The success of the identified measure, �(Amin/Amax)D, lies in
considering two limiting properties for each pore in the packing,
before the standard deviation of the distribution is calculated. If
the standard deviations of the two  distributions for one limiting
property of each individual pore are related, the resulting value,
�(Amin)D/�(Amax)D, fails to mimic  the tortuosity–porosity scaling
of the different packing types (Fig. 7B). The comparison of Fig. 7A
and B with Fig. 6 demonstrates the importance of relating two lim-
iting properties for each pore to describe the heterogeneity around
individual pores in a packing and ultimately the tortuosity. It also
explains why previous attempts to correlate tortuosity with sta-
tistical moments of the pore size distribution or similar measures
gave inconclusive results [51,52].

The (Amin/Amax)D-distributions reveal details about the changes
in the direct pore environment upon densification of the differ-
ent packing types. Fig. 8A shows (Amin/Amax)D-distributions for the
JT-packings at the limiting bed porosities. The distributions are
positively skewed and cover a range of ca. (Amin/Amax)D = 0.05–1.
At ε = 0.46, the (Amin/Amax)D-distribution of the Rx0.001-packing
is only minimally different from the two virtually identical
(Amin/Amax)D-distributions of the R- and S-packing, whereas
the distribution of the Sx2-packing is visibly shifted to larger
(Amin/Amax)D-values. At ε = 0.366, the (Amin/Amax)D-distributions
of the Rx0.001, R-, and S-packings are identical, just as previ-
ously observed for the Voronoi volume distributions (Fig. 5B),
because at the random-close packing limit, the JT-packing types
converge to the same microstructure. The two spikes that appear
at (Amin/Amax)D = 0.38 and 1 coincide with the (Amin/Amax)D-values
calculated for the FCC packing at its limiting porosity of ε = 0.26.
The FCC packing has two Delaunay simplices of regular geome-
try, a tetrahedron and a quartoctahedron, which yield values of
(Amin/Amax)D = 1 and 0.38, respectively. The latter line is not invari-
ant with the porosity, but shifts to larger values upon dilution of the
packing. A value of (Amin/Amax)D = 1 is also calculated for the BCC
packing, where the underlying Delaunay simplex is a tetrahedron

with equal faces (but not with equal edges, as in the FCC pack-
ing). Densification of JT-packing types (from ε = 0.46 to ε = 0.366)
shifts the maximum of the (Amin/Amax)D-distribution to larger val-
ues and thus more homogeneous pore environments and raises
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Fig. 8. Distribution of (Amin/Amax)D for the generated packings at the limiting porosities. (A) Comparison of the Jodrey–Tory packing types. (B) Comparison of the Monte
Carlo-packing types with the Jodrey–Tory generated R-packing type.
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re  shown normalized to the Rx0.001-packing type.

he intensity of the spikes (and therefore the number of crystal-
ype pore-environments), while the functional form remains nearly
nchanged.

The (Amin/Amax)D-distributions for the MC-packing types
Fig. 8B) are also positively skewed, but contain no spikes. Com-
ared with JT-packings (as exemplified in Fig. 8B by the R-packing
ype) the (Amin/Amax)D-distributions of the MC-packings are visi-
ly shifted to larger values, which range over (Amin/Amax)D = 0.14–1.
he change in the (Amin/Amax)D-distributions upon densification is
ore pronounced for MC-  than for JT-packings and accompanied by

 change in the functional form, with a principal mode at lower val-
es (for the �x0.95-packing at (Amin/Amax)D = 0.38, coinciding with
he spike developed by the R-packing) and a second mode devel-
ping towards larger (Amin/Amax)D-values. This behavior is more
ronounced for the �x0.05- than for the �x0.95-packing and again
eflects the above-discussed property of the MC-algorithm to real-
ze lower porosities by introducing dense, highly ordered regions
nto the packings, which leaves more possibilities (and thus more
isorder) for sphere placement in the more loosely packed regions.
he comparison of Fig. 8A and B reveals that MC-packings generally
ossess more homogeneous pore environments than JT-packings.
he lower range of (Amin/Amax)D-values in the distributions for the
T-packings is much less realized in the MC-packings, so that their
(Amin/Amax)D-values (Fig. 7A) and tortuosities are lower (Fig. 6).

For all six packing types �(Amin/Amax)D (Fig. 7A) and the tor-

uosity (Fig. 6) increase upon densification, which means that the
xtent to which the pore environment varies in a packing grows
ith densification and that this in turn raises the tortuosity. Fig. 9A

nd B shows the porosity-scaling of the simulated tortuosity val-
ay tessellation-based measure �(Amin/Amax)D for the generated packing types. Data

ues and of �(Amin/Amax)D side-by-side; to facilitate comparison the
data are shown normalized to the Rx0.001-packing type. This direct
comparison demonstrates the quality of the identified measure
�(Amin/Amax)D as a descriptor for the porosity- and packing type-
dependent influence of the packing microstructure on the diffusive
tortuosity of monodisperse, bulk, random sphere packings.

4. Conclusions

By simulating diffusion in six computer-generated packing
types with systematically varied degrees of microstructural het-
erogeneity, we  have shown that the diffusive tortuosity of bulk,
monodisperse, random sphere packings is not fully defined by the
bed porosity, but also depends on the packing type. The tortuosity
is influenced by the extent to which the structural environment
of individual pores varies in a packing, and for this influence
we have proposed a suitable measure based on Delaunay tes-
sellation of the pore space. The ratio of the minimum to the
maximum void face area of the Delaunay tetrahedron around
a pore, (Amin/Amax)D, is a geometrical descriptor of the struc-
tural environment around this pore. The standard deviation of
the distribution of this geometrical parameter for all pores in the
packing, �(Amin/Amax)D, follows the same porosity-scaling as the
tortuosity of the investigated packing types. While �(Amin/Amax)D
is not sufficient to predict the diffusive tortuosity of a packing,

it captures the influence of the packing type with its distinct,
porosity-dependent microstructure on this transport property. The
identified structure–transport correlation underlines the generic
difference between random and crystal hard-sphere packings: the
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hree-dimensionally ordered microstructure of crystal packings is
ndependent of the porosity and has a strictly limited number of
ore environments, whereas random sphere packings possess a

arge number of different pore environments and a correspondingly
ide distribution of (Amin/Amax)D-values that is subject to change
ith porosity and packing type.

The correlation of tortuosity to the limiting properties of indi-
idual pores (i.e., the ratio of minimum to maximum void face
rea, where the void face area may  be interpreted as the size of
he pore throat) reflects the piecewise, random nature of diffu-
ion, which is calculated from independent tracer motions and
nows no directional preference. This is the major difference
o hydrodynamic dispersion, which depends on the convective,
irection-dependent flow-field and is correlated to a packing’s
icrostructural degree of heterogeneity (DOH) or packing-scale

isorder. Packings with identical DOH (e.g., R- and S-packings at
 = 0.366) have identical dispersion coefficients [10] as well as tor-
uosities, but packings with different DOHs and thus dispersion
oefficients may  nevertheless have identical tortuosities (e.g., R-
nd S-packings at ε = 0.46). Also, a high DOH or packing-scale dis-
rder does not necessarily indicate high tortuosity, as we  have
een for the �x0.05-packing type at low porosities. This apparent
ichotomy highlights the importance of discovering the relevant

ength scale of structural inhomogeneities for each transport phe-
omenon to establish structure–transport correlations for random
orous media: packing-scale disorder for flow-field dependent dis-
ersion vs. pore-environment heterogeneity for diffusion.
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